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Abstract. The Collatz Conjecture’s connection to dynamical systems opens it to a variety of techniques
aimed at recurrence and density results. First, we turn to density results and strengthen the result of Terras

through finding a strict rate of convergence using a recurrence argument. This rate gives a preliminary
result on the Triangle Conjecture, which describes a set nodes that would dominate LC = {y ∈ N |Tk(y) >

y, ∀k ∈ N}. Next, we extend this argument to several situations considered in previous literature. Third,

we extend prior arguments to show that the construction of several classes of measures imply the bounded
trajectories piece of the Collatz Conjecture.

1. Introduction

The Collatz Map T : N → N given by

(1) T (x) =

{
x
2 x even
3x+1

2 x odd

poses difficult questions on recurrence due to its complex behavior. The famous Collatz conjecture (or
Syracuse conjecture, Kakutani Conjecture, Ulam’s Conjecture) states that for any n ∈ N, T k(n) = 1 for
some k ∈ N, or that the Collatz map returns to the cycle {1, 2} for all values. This may be broken into two
pieces: first that every value returns to a cycle, or the bounded trajectories conjecture, and second that the
only cycle is {1, 2}.

It was shown in [2] that the natural numbers may be broken into 3 components, N = C ∪D1 ∪D2, where
C is the set of all elements of cycles of the Collatz map, D1 is the set of all values returning to a cycle, and
D2 is the set of all nodes which do not return to a cycle. The bounded trajectories conjecture then says
D2 = ∅ and the unique cycle conjecture states C = {1, 2}. The same paper gives a critereon for the former
conjecture, that D2 is empty if and only if there exists a finite measure µ defined on every value in N which
is everywhere nonzero and power bounded with respect to the map T . This result was extended in [3] to a
more general class of maps.

Furthermore, [3] investigated another property of the inverse Collatz map. Recall that for any point
a ∈ N, we may consider all preimages of a given by ∪∞

i=0T
−i(a), which may be referred to as the inverse tree

generated by a due to the organization of these values discussed in [3]. A further extension of this set may
be considered.

Definition 1. Let a ∈ N. The Chain-Tree generated by a is ∪∞
i=0 ∪∞

j=0 T
−j(T i(a)). A chain in this set is a

collection of elements indexed by the integers, {az}z∈Z where T (az) = az+1.

The chain tree is stable under both the forward and inverse Collatz map, and any two nodes within the
same chain tree will generate the same chain tree under this definition. The chain is an arbitrary choice
indexing the “levels” of the chain-tree (see Figure 1), and certain chains, such as the “leftmost” chain
discussed in [3] have structural properties. However, this labeling is enough to weaken the requirements on
a measure to show that D2 is nonempty. See section 4.

The same paper left an open question related to the structure of the inverse “triangle” first posed by
I. Assani. Consider the partitions of N by mod 3 remainders N0,N1,N2. For a0 ∈ N0 ∪ N1, T

−1(a0) =
{2a0}, and for a2 ∈ N2, T−1(a2) = {2a2, 2a2−1

3 }. This offers an immediate arrangement of the inverse
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Figure 1. A Snippet of a Chain-Tree with the Chain section highlighted in Blue

images. Further, each N2 node a2 is of the form 3kh − 1 where h is not a multiple of 3, k ≥ 1. Using the
above formula, T−1(3kh − 1) = {2(3kh − 1), 3k−1(2h) − 1}, so that there exists a sequence of k preimages
3k−1(2h)−1, 3k−2(22h)−1, ..., 2kh−1 which is strictly decreasing. The open conjecture states that this is the

only such sequence of preimages in
⋃k

i=0 T
−i(3kh− 1). We call this the Triangle Conjecture. Precisely, fix a

N2 node 3kh− 1, where k, h ≥ 1. Then, the triangle conjecture says that there exists no a ∈ T−k(3kh− 1)
such that a ̸= 2kh− 1 and a ≤ T l(a) for all 1 ≤ a ≤ k.

Recall the set L = {y ∈ N | ∃k ∈ N such that T k(y) < y} of Terras [16]. The Triangle Conjecture creates a
set of nodes which dominates Lc, locating possible nodes with no lesser image. The two concepts are closely
intertwined.

In the first section, we strengthen the density result od Terras by finding a rate of convergence of the
density of the set L to 1. This rate of convergence provides a rough upper bound on the number of possible
nodes in a ∈ T−k(3kh − 1) which have no lesser image in {a, T (a), ..., T k(a)}, providing a partial result on
the triangle conjecture.

In the second section, we use the argument and structure developed in that rate of convergence to ascribe
an analogous result to a much broader class of Syracuse maps, showing that the same type of density result
holds even for maps conjectured to have unbounded trajectories.

In the third section, we investigate some generalizations of the arguments of [2] and [3] to give weaker
requirements for the measures involved in showing D2 empty.

Figure 2. The Triangle for k = 3
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2. An Introduction to Density Results

In lieu of results on strict cases, it is worthwhile to at least obtain some information on sets with full density
in the natural numbers. An important foundational case for the Collatz map is the set L = {y ∈ N | ∃k ∈
N such that T k(y) < y} introduced by R.Terras [16], which Terras proved to have density 1. This result was
extended to show the set that Mc = {y ∈ N | ∃k ∈ N such that T k(y) < yc} has density 1 for c ≥ log3(2) by
I.Korec [8]. Further analysis into these densities via statistical properties and probability distributions have
been carried out authors such as Lagarias [11], Kontovorich, and Sinai ( [7], [14]). Recently, T.Tao has also
shown that the set D2 has logarithmic density 1 [15] through an argument using representation theory and
probability distributions. In this section, we shall focus on introducing an alternate proof of Terras’ original
result which gives more precisely the rate of convergence of the density of the set L to 1. First, we recall
some structures original to Terras.

Definition 2. For k, y ∈ N, define Ek(y) to be the vector of length k whose ith component is 1 if T i−1(y) is
odd, and 0 if it is even. Define Sk(y) to be the sum of the elements of Ek(y).

Also, we use from [16] the following proposition.

Proposition 1. Ek(y) = Ek(x) if and only if x ≡ y mod 2k.

This proposition is often called periodicity for the Collatz map, as it allows consideration of a finite
number of numbers which may be extrapolated to a density. With these, we may introduce a refinement of
Terras’ result.

Theorem 2. For fixed k ∈ N, let Lk = {y ∈ N | ∃m, 1 ≤ m ≤ k, such that Tm(y) ≤ y}. The density of LC
k

is at most

(2)
2m

2k

m∏
n=0

2n+ 1

n+ 1

where m = ⌊k
2 ⌋.

To prove this theorem, we will take 3 steps. First, we will introduce a general structure used in this
section and the next, which has the form of a Pascal or Catalan triangle with a set of restrictions. Second,
we will connect this general form to a specific triangle related to the Collatz map. Third, we will use the
structure of the triangle to compute the upper bound.

Second, we will look at a specific case of this triangle and some basic results about it. Third, we will
connect this to the Collatz map.

Step 1: Take a map τ : N → R. We define a sequence of sequences, {{xn
i }i≥0}n≥0 where xn

0 = 1 for all
n and for n > 1,

(3) xn
k =


xn
k + xn

k−1 k ≤ τ(n)

0 else

Consider the nth sequence to correspond to the nth row of the constructed triangle. For example, if we take
τ(k) = k, then this defines the standard Pascal Triangle. The function τ restricts when the rows may expand
to have more nonzero values in the sequence.

Consider, for example, the first 11 rows of the triangle constructed by τ(n) = n
2 (starting at the 0th row).
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i =0 1 2 3 4 5...

n = 0 1 0 0 0...

n = 1 1 0 0 0...

n = 2 1 1 0 0...

n = 3 1 2 0 0...

n = 4 1 3 2 0 0...

n = 5 1 4 5 0 0...

n = 6 1 5 9 5 0 0...

n = 7 1 6 14 14 0 0...

n = 8 1 7 20 28 14 0 0...

n = 9 1 8 27 48 42 0 0...

n = 10 1 9 35 75 90 42 0 0...

...

Step 2: We prove the following lemma

Lemma 3. Let τ(k) = 2k. Then, the row sum
∑∞

i=0 x
n
i gives an upper bound for the number of vectors

Sk(x) such that Tm(x) > x for all 1 ≤ m ≤ k.

Proof. Consider y ∈ LC
k . Then, we have that Tn(y)

y > 1 for all 1 ≤ n ≤ k. Set l = Sn(y) and and in

particular that for all such n

(4) (
3y + 1

2y
)l(

y

2y
)n−l ≥ Tn(y)

Tn−1(y)

Tn−1(y)

T k−2(y)
...
T (y)

y
=

Tn(y)

y
≥ 1

By taking logs, we note that

(5) Sn(y) ≥
n ln(2)

ln(3 + 1
y )

so that Sn(y) ≥ n
2 in general since y ≥ 1. Therefore, the number of vectors satisfying this inequality for

n ≤ k bounds the number of vectors so Tn(y) > y for n ≤ k.
To count the number of Ek(x) vectors satisfying this restriction, we may construct a recurrence relation by

counting the number of 0s possible in the vector. There is always only a single vector with no 0s, the vector
of all 1s. If the number of 0s, l, is less than n

2 , then when considering a En+1 vector, we may take a vector
with l zeroes and attach another 0 or add a 1 at the end while still satisfying this inequality. Therefore,
the number of En+1 vectors with l zeroes, 1 ≤ l ≤ n

2 , is the number of En vectors with l zeroes plus the

number with l − 1 zeroes. Now, consider that if l > n
2 and if l ≤ n+1

2 , the number of En+1 vectors with l
zeroes is precisely the number of En vectors with l−1. For all other values, there are 0 vectors satisfying the
relations. Tracing these recurrence relations shows that the number of En vectors with i zeroes is precisely
xn
i for τ(k) = 2k. Therefore, counting these vectors reduces to taking the row sum of the triangle constructed

by this τ . Fix the {{xn
i }i≥0}n≥0 as those generated this way.

□

Notice that that row sums are strictly increasing, so it suffices to consider only the odd-number rows to
generate an upper bound. From the triangle above, this amounts to considering the rows
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n = 1 1

n = 3 1 2

n = 5 1 4 5

n = 7 1 6 14 14

n = 9 1 8 27 48 42

...

Consider now this triangle within its own right. Define, now, a sequence of sequences for this triangle
{{yni }i≥0}n≥0 where yni = x2n+1

i . Considering the recurrence relation row-wise, ynk = yn−2
k−2 + 2yn−2

k−1 + yn−2
k .

This triangle develops a more Catalan-like relation, and this is not the first time it has appeared. In
particular, Shapiro [13] showed that for the largest index k so that ynk ̸= 0, ynk is precisely the nth Catalan

number, 1
n+1

(
2n
n

)
. He also computed the row sums of this triangle, which we repeat in a simplified way for

posterity.

Lemma 4. The row sum of the triangle on xn
i at level 2n+ 1 is

(6)
∑
i

x2n+1
i =

∑
i

yni = 2n
n∏

k=0

2k + 1

k + 1

Proof. We apply induction to the triangle {{ynk }}, noting that the n-th level of this triangle corresponds to
the 2n+ 1-st level of the {{xn

k}} triangle.
The formula given is immediate in the case n = 0 or n = 1 from the values computed above. Let it be

shown for values up to n− 1 and consider row n. Then, also note that

(7)
∑
i

yni =
∑
i

yn−1
i−2 + 2yn−1

i−1 + yn−1
i = 4(

∑
i

yn−1
i )− yn−1

n−1
2

= 4(
∑
i

yn−1
i )− yn−1

k

where n−1
2 = k is the largest index i so yn−1

i = x2n−1
i is nonzero. Now, we may apply the inductive

assumption and the result from [13] to note that this sum is

(8) 4(2n−1
n−1∏
k=0

2k + 1

k + 1
)− 1

n+ 1

(
2n

n

)
With some algebraic manipulation,

1

n+ 1

(
2n

n

)
=

1

n+ 1

(
(2n)!

n!n!

)
=

1

n+ 1

(
(
2

1
× 4

2
× ...× 2n

n
)(
1

1
× 3

2
× ...× 2n− 1

n
)

)
(9)

=
2

n+ 1

(
2n−1

n−1∏
k=0

2k + 1

k + 1

)
(10)

□

Step 3: We now prove the theorem.

Proof. The number of unique Ek(x) vectors is 2
k by Terras’ periodicity. The number of such vectors satisfying

Sn(x) >
x
2 for all n ≤ k is then bounded above by

(11) 2m
m∏

n=0

2n+ 1

n+ 1

for m = ⌊k
2 ⌋ by lemma 4 and lemma 3. Thus, the density of LC

k is then at most

(12) 2m−k
m∏

n=0

2n+ 1

n+ 1

□

Corollary 1. The density of L is 1.
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Proof. Since LC ⊂ LC
k for all k, we have that the density of LC is at most

(13) lim
k→∞

2m

2k

m∏
n=0

2n+ 1

n+ 1
= lim

k→∞

2m

2k−m−1

m∏
n=0

2n+ 1

2n+ 2
≤ lim

m→∞
2(

m∏
n=0

2n+ 1

2n+ 2
)

for m a function of k as above. Note then that the rightmost limit is then

(14) exp( lim
m→∞

ln(2) +

m∑
n=0

ln(1− 1

2n+ 2
)

for x < 1, we have that ln(1− x) ≤ −x since f(x) = ln(1− x) + x has f(0) = 0 and f ′(x) = −x
1−x ≤ 0. Thus,

since the exponential is an increasing function, this limit is at most

(15) exp( lim
m→∞

ln(2) +

m∑
n=0

− 1

2n+ 2
)

The series is harmonic and thus diverges to negative infinity, so that the total limit is 0. □

2.1. Bounding the Number of Failures within the Triangle. Recall from [3] the conjecture on the
inverse image triangle of a N2 node. Precisely, it is conjectured that given any k, n ∈ N, a ∈ T−k(3kh− 1),
a ̸= 2kh−1, then there exists some m so 1 ≤ m ≤ k such that T k(a) < a. Since we may consider 3k−1(3h)−1

and further reductions, this is to say that this holds for all nodes in the preimages
⋃k

i=1 T
−i(3kh− 1) not of

the form 2a3k−ah− 1, i.e. the leftmost branch as distinguished in that paper as well.

This result would locate the values not in L as defined in section 3, by generating a set in which, if values
in Lc exist, they must be located. The main theorem of the prior section introduces an upper bound for the
number of such exception cases.

Corollary 2. For a fixed k, h ∈ N, the number of a ∈ T−k(3kh − 1) such that for all m so 1 ≤ m ≤ k has
Tm(a) > a is at most

(16) 2m
m∏

n=0

2n+ 1

n+ 1

where m = ⌊k
2 ⌋.

Proof. The number of nodes a in the triangle generated by 3kh − 1 such that Tm(a) > a for 1 ≤ m ≤ k is
at most the number of Ek(y) vectors corresponding to 1 ≤ y ≤ 2k so Tm(y) > y for 1 ≤ m ≤ k. Thus, this
is given precisely as in lemma 3 and lemma 4. □

We may also simplify the number of cases to calculate drastically by examining the structure of the
triangle and how it varies across different values of h.

Proposition 5. The structure of the triangle generated by 3kh − 1 is invariant with respect to h. That is
to say, for each a ∈ T−l(3kh− 1), 1 ≤ l ≤ k, and for any h1 ∈ N, there exists a1 ∈ T−l(3kh1 − 1) such that
El(a) = El(a1).

Proof. Fix k, h ∈ N and consider a ∈ T−l(3kh− 1) for 1 ≤ l ≤ k. We wish to show that there exist α, β not
dependent on h so that a = 2l3k−lhα + β. This decomposes a into the part maintaining the initial power
of 3 (2l3k−lα) and the “remainder” part that helps locate it on the branch β. Indeed, consider that the
preimage of 3kh − 1 is {2(3k−1)h − 1, 2(3kh) − 2}. Working inductively, if we assume there are α0 and β0

not dependent on h so T (a) = 2l−13k−l+1hα0+β0, then a ∈ {2l3k−lhα0+
2β0−1

3 , 2l3k−lh(3α0)+2β0} where,

when the first option is possible, 2β0−1
3 is an integer. Therefore, we may express a in the desired form as

well.

Now, consider El(a). Denote, for arbitrary h1 ∈ N, a1 = 2l3k−lh1α + β. By Terras’ periodicity result,
El(a1) = El(a), and further this implies by repeated applications of the Collatz map that T l(a1) = 3kh1−1.

□



ON THE CONVERGENCE OF THE DENSITY OF TERRAS’ SET 7

Proposition 6. For a fixed k, the value a ∈ T−k(3kh − 1) has an associated node a1 so Tm(a1) > a1 for
all 1 ≤ m ≤ k if and only if

(17) 3Sm(a) > 2m

for the same m

Proof. In the case k = 1, T (a)
a is either 1/2 or 3

2 − 1
2(2khα+β)

< 3
2 . Therefore, in the case that a < Tm(a)

Tm(a)

a
=

Tm(a)

Tm−1(a)

Tm−1(a)

Tm−2(a)
...

T 2(a)

T (a)

T (a)

a
< (

1

2
)m−Sm(a)(

3

2
)Sm(a) =

3Sm(a)

2m
(18)

Consider now that 3Sm(a) > 2m for all such m ≤ k. Then, we may take some α = min{a, T (a), ..., T k(a)}
and the same computation above gives

(19)
Tm(a)

a
> 2−m

(
3− 1

α

)Sm(a)

Since α → ∞ as h → ∞, for sufficiently large h, we then have that the right is greater than 1 by the
assumption. Denote such an h as h1 and the associated point on the tree (as in the previous proposition) as
a1, finishing the proof. □

Proposition 11 reduces solving the triangle conjecture to looking at a limiting ratio between the values in
the triangle and the top of the triangle. This gives a more rigid structure to check across k without worrying
about h.

Further, the invariance with respect to h occurs beyond h ∈ N, and considering an extension of the Collatz
map to T : Z → Z allows consideration of h = 0 or to looking at the triangle of k levels generated by −1,
which has the same structure as for h = 1 well.It is not yet clear how this extension connects to the triangle
conjecture, but is an interesting point nonetheless.

3. More General Delayed-Phase Triangles

3.1. Considerations on Syracuse Maps. We now extend our considerations from the Collatz map to
some more general maps of the form in [3]

(20) V (x) =
{

mix+ri
d x ≡ i mod d

where ri = −imi mod d and m0m1...md−1 is relatively prime to d. This definition was referenced from [12]
and used also in [3]. We will not require the relatively prime assumption for this work.

We take the additional assumption that mi < d for some i. Without this, the maps would grow in almost
all cases and their analysis wouldn’t be worthwhile.

Next, define LV = {x ∈ N | V k(x) < x for some k ∈ N}. We wish to show that the density of the set Lv

is 1. We do this through the simplified sets LV
k = {x ∈ N | V m(x) < x for some m ≤ k}.

To begin with, consider a vector v ∈ {0, 1}n, and we define Sk(v) to be the number of ones appearing
in the first k components of v. We wish to count the number of vectors in {0, 1}n satisfying Sk(v) ≥ k

α for
some α ∈ Z so α ≥ 2 and 1 ≤ k ≤ n.

To do this, consider a delayed-phase Pascal’s triangle with τ(k) = (1 − 1
α )k . This means that we take

a sequence of sequences {{xn
k}k≥0}n≥0 where we define x0

n = 1 for all n and define all other values by the
relationship

xn
k =

{
xn−1
k−1 + xn−1

k k ≤ ⌊n(1− 1
α )⌋

0 else
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In more direct words, this triangle has a “skip” every α rows. For example, α = 3 looks like:

i =0 1 2 3 4 5...

n = 0 1 0 0 0...

n = 1 1 0 0 0...

n = 2 1 1 0 0...

n = 3 1 2 1 0...

n = 4 1 3 3 0 0...

n = 5 1 4 6 3 0...

n = 6 1 5 10 9 3 0...

n = 7 1 6 15 19 12 0...

Note that xn
k denotes the number of vectors of length n with k zeroes such that Sk(v) ≥ k

α for all k ≤ n.

Proposition 7. Denote by Rα(n) the balanced row-sum 2−n
∑

k x
n
k for the recurrence triangle generated by

this α ≥ 2. Then,

(21) lim
n→∞

Rn = 2− Cα(2−α)

where Cα(x) is the generating function for the Catalan-Fuss numbers.

Proof. First, note that the values xn
k are increasing with α, so that if we show this holds for large α, the

smaller cases follow immediately.
Second note that this ratio Rn is constant when rows of the triangle do not “skip”, or when the growth of

k is not restricted. Therefore, we only analyze the levels in which these Rn change, and to do so we define
a new triangle by

(22) yij = xαi+1
(α−1)i−j

Since the xn
k satisfy the relationship xn

k =
∑α

l=0

(
α
l

)
xn−α
k−l when the xn

k is nonzero, we can translate the

same relationship to the yij :

(23) yij =

n∑
k=0

(
n

k

)
yi−1
(j+1)−k

where we consider yij = 0 for i < 0. This characterization is not strictly necessary, but it emphasizes the
important traits of the triangle as in the prior case.

Define Sn =
∑∞

j=1 y
n
j and note that Sn = 2αSn−1 − yn−1

0 . Therefore, since S0 = 1 we have that

Sn = 2αn −
∑n−1

i=0 2α(n−1−i)yi0 and Rnα+1 = 1 −
∑n−1

i=0 2−(i+1)αyi0. The above observation on the Rn then

says that Rnα+1 = Rnα+2 = ... = Rnα+1+α−1 = 1−
∑n−1

i=1 2−iαyi0.

Let us now define a k-Dyck path. A k-Dyck path of length (k + 1)n is a series of (k + 1)n up or down
steps. Up steps move right 1 and up k, while down steps move down 1 and right 1. In particular, we are
Moving from the point (0, 0) in the plane to the point ((k + 1)n, 0) while keeping y-values non-negative. In
some cases, this may also be called an up-down path. We may denote a path by a vector of 1s and 0s, where
we have a 1 denoting an up step and a 0 denoting a down step.

Consider that an (α − 1)-Dyck path of length (α)n must have also precisely (α − 1)n down steps, or 0s.
Furthermore, the restriction that the path keeps in non-negative y is precisely the restriction that the sum
over the first k values of the vector must be at least k

α , corresponding to Sk(v) ≥ k
α . This is to say that the

number of (α− 1)-Dyck paths of length αn is precisely xαn
(α−1)n = yn−1

0 (since xαn
(α−1)n = x

α(n−1)+1
(α−1)(n−1) directly

from the recurrence).
Thus, we have that for n > 0, from the second page of [1],

yn0 =
1

(α− 1)(n+ 1) + 1

(
α(n+ 1)

(n+ 1)

)
=

1

α(n+ 1) + 1

(
α(n+ 1) + 1

n+ 1

)
Other values of the ynk relate to down-step statistics of Dyck paths investigated in [1] as well.
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Since these are the standard Fuss-Catalan numbers, we may use the generating function

Cα(x) = 1 +

∞∑
n=1

1

αn+ 1

(
αn+ 1

n

)
xn = 1 +

∞∑
n=0

yn0 x
n+1

and finally

(24) lim
n→∞

2−Rn = lim
n→∞

2−Rnα+1 = Cα(2−α)

This establishes the claim. □

Lemma 8. For α > 2, we have Cα(2−α) =
∑∞

n=0 2
−αn

(
1

αn+1

(
αn+1

n

))
< 2 is the unique root of yα−2αy+2α

in (1, 2).

Proof. It is a common relation on this generating function ( [5] page 347) that

x(Cα(x))α = Cα(x)− 1

so that Cα(2−α) is a root of yα − 2αy + 2α greater than 1. Since the derivative of this polynomial,
αyα−1 − 2α, has at most 2 roots and these are of the same magnitude in (1, 2), and since there is a root of
the original polynomial at 2, there is a single root in (1, 2).

By the ratio test, Cα(2−α) converges for all α. Furthermore, for n > 2

(25)
1

αn+ 1

(
αn+ 1

n

)
< 2α−2

we recover that Cα(2−α) < 2.
□

Using this lemma and the previous proposition, we may almost recover a result of H.Möller in the case
d = 2:

Corollary 3. Any Syracuse map

(26) V (x) =

{
tx+1
2 x odd

x
2 x even

for t ≥ 7 has LV of density less than 1.

Proof. For y ∈ (LV )C

(27)
V m(y)

y
≥ 1

2

m

(t)Sm(y)

such that the number of vectors so

(28) Sm(y) ≥ m
ln(2)

ln(t)

is bounded above by the number of y ∈ (LV
m)c by the extended periodicity. Since t ≥ 7, we have that this

is at least the number of vectors so Sm(v) ≥ m
3 , so the previous proposition and lemma show limn→∞ Rn > 0.

□

The case of the 5x + 1 map simply requires a different consideration of this connection to Dyck paths,
which will be explored later.
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3.2. Powers of x. We now look at the case of Mc = {x ∈ N |T k(x) < xc for some k ∈ N} for c ∈ (0, 1) and
how that corresponds to the same triangles. Using the same string of calculations, y /∈ Mc implies

Tm(y) > yc ⇒ Sm(y) ≥ m ln(2) + ln(y)(c− 1)

ln(3 + 1/β)
(29)

For sufficient β as in the previous cases. We consider the case β = 1 to allow for computation with Dyck
paths, though this may perhaps be strengthened. Then, the number of y ≤ 2k so the above holds for all
m ≤ k is bounded above by the number of vectors so

Sm(v) ≥ m

2
− (1− c)

k

2
(30)

for all m ≤ k. We may generate the delayed-phase triangle with the rule τ(n) = n
2 + (1 − c)k2 . For

example, if we set c = 1/2 and k = 8, we see the triangle

i =0 1 2 3 4 5...

n = 0 1 0 0 0...

n = 1 1 1 0 0...

n = 2 1 2 1 0...

n = 3 1 3 3 1 0...

n = 4 1 4 6 4 1 0...

n = 5 1 5 10 10 5 0...

n = 6 1 6 15 20 15 5 0...

n = 7 1 7 21 35 35 20 0...

Now, we may construct consider the levels in which “skips” occur exactly as before to generate a new
triangle {{ynk }}. Then,

(31) ynk = x⌊(1−c)k⌋−1+2n

related by ynk = yn−1
k−1 + 2yn−1

k + yn−1
k+1 , where y−1

k is considered to be 0 for all k. In particular, this triangle

{{ynk }} starts with {y0k}k a row of the binomial triangle, then proceeds recurrently the same way as in the
proof for the Collatz map without power.

Lemma 9. For m = ⌊(1− c)k⌋ − 1,

(32) yn0 =
m+ 2

2n+m+ 2

(
2n+m+ 2

n

)
Proof. We consider the same Dyck-path connection as in the case of the Syracuse maps. Note that ynk =

xm+2n
m+n = xm+2n+1

m+n+1 is the vector of length 2n +m + 1 satisfying Sk(v) ≥ k
2 −m for all k ≤ m + n + 1 with

m+ n+ 1 1s.
This is to say that it is the same as a Dyck path from (0,m+1) to (2n+m+1, 0) with up-steps (1, 1) and

down-steps (1,−1) staying above the x-axis. In particular, yn0 represents the number of Dyck paths from
(0,m+ 1) to (2n+m+ 1, 0) with up-steps (1, 1) and down-steps (1,−1).

By corollary 2.4 in [4], the number of Dyck-paths from (0, 0) to (2n+m+ 1,m+ 1) with up-steps (1, 1)
and down-steps (1,−1) is

(33)
m+ 2

2n+m+ 2

(
2n+m+ 2

n

)
by symmetry, this is precisely the same as the number from (0,m+ 1) to (2n+m+ 1, 0), and so this gives
yn0 . □

In fact, using the same argument gives
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Corollary 4. For the triangle generated by τ(n) = (1− 1
α )n−m, we have that

(34) xαn+m
n+m = yn0 =

m+ 2

αn+m+ 2

(
αn+m+ 2

n

)
However, we will continue in the α = 2 case of the Collatz map, due to the fact that the binomial

coefficients m+2
2n+m+2

(
2n+m+2

n

)
have a well-understood generating function. In fact, these coefficients are

precisely convolutions of Catalan numbers. Thus, we may reach a clean bound for the row sums.

Proposition 10. The n-th row sum of the triangle generated by τ(n) = n
2 + (1− c)k2 is

(35)


2n n ≤ m+ 1

2n −
∑n−m

2 −1

k=0

(
n+1
k

)
n−m

2 ∈ N, n > m+ 1

2(2n−1 −
∑n−m−1

2 −1

k=0

(
n
k

)
n−m−1

2 ∈ N, n > m+ 1

where m = ⌊(1− c)k⌋ − 1.

Proof. First, by the Catalan Convlution formula, the nth number of the kth Catalan convolution is k
2n+k

(
2n+k

n

)
.

For k = m+ 2, this is precisely the yn0 computed above.
Next, construct a generating function for the row sums. Let the sum at the nth level of the triangle {{ynk }}

starting with the m-th binomial row be fm(n). Define Fm(x) =
∑∞

n=0 fm(x)xn. We know that fm(0) = 2m.
Therefore, we may use the recursion definition of the sum to obtain

Fm(x) = 2m +

∞∑
n=1

(4fm(n− 1)− cm+2(n− 1))xn

where we denote by the ck(n) the n-th number in the k-th convolution of Catalan numbers. Note that

the Catalan numbers have generating function C(x) = 1−
√
1−4x
2x , so that the k-th convolution has generating

function C(x)k. Then, the above simplifies to

Fm(x) =
1

1− 4x
(2m − xC(x)m+2) = 2m

( ∞∑
n=0

(4x)n

)
− xC(x)m

1− 4x

Applying the fact that

C(x)k√
1− 4x

=

∞∑
n=0

(
2n+ k

n

)
xn

1√
1− 4x

=

∞∑
n=0

(
2n

n

)
xn

we may realize that

x
C(x)m+2

1− 4x
=

∞∑
n=0

xn
n−1∑
k=0

(
2k

k

)(
2(n− k) +m+ 2

(n− k)

)
This may computed with integral representations, called the Egorychev method. In our case, we use only

the fact that (
n

k

)
= res0(

(1 + z)n

zk+1
)
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to write that
n−1∑
k=0

(
2k

k

)(
2(n− 1− k) +m+ 2

(n− 1− k)

)
=

∞∑
k=0

(
2k

k

)(
2(n− 1− k) +m+ 2

(n− 1− k)

)

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m−2k

zn−k

∞∑
k=0

(
2k

k

)
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m

zn

∞∑
k=0

(
2k

k

)(
z

(1 + z)2

)
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m

zn
1√

1− 4( z
(1+z)2

dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m

zn
1 + z√
(1− z)2

dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m+1

zn
1

(1− z)
dz

=
1

2πi

∫
|z|=ϵ

(1 + z)2n+m+1

zn

∞∑
k=0

zkdz

=

∞∑
k=0

(
2n+m+ 1

n− 1− k

)
n−1∑
k=0

(
2n+m+ 1

k

)
Putting this back into the original sum gives that the row sum

∑∞
i=0 y

n
i is

2m+2n −
n−1∑
k=0

(
2n+m+ 1

k

)
Note that the {{xn

k}} triangle gives powers of two up until the (m+ 1)st row, then doubles on each row
a “skip” does not occur. Hence, translating this to the form given in the proposition finishes the proof. □

3.3. A Connection Between the Triangle and Lattice Paths. Both of the above triangles were devoted
to counting the number of vectors v ∈ {0, 1}k so

(36) Sm(v) ≥ mα− β

for α ∈ (0, 1)
In the first case, we made a connection to a triangle studied directly by Shapiro, but the connection of

the second case to Dyck paths is more generally applicable. In the above case, we used the up-down step
model. Let us now convert to the model of Dyck paths as lattice paths under a diagonal (i.e. paths from
(0, 0) to some point weakly below y = ax + b along lattice Z2 taking steps either (x, y) → (x + 1, y) or
(x, y) → (x, y + 1) only).

For each lattice path, we may codify a horizontal step as a 1 and a vertical step as a 0 to turn the path
into a binary vector v. Then, Sm(v) ≥ mα− β becomes

(37) x ≥ (x+ y)α− β

or

(38) y ≤
(
1

α
− 1

)
x+

β

α

thus, the number of v of length k satisfying equation 36 is the number of lattice paths satisfying inequality
38 at each step such that x + y = k. In particular, the y value of the endpoint counts the number of 0s in
the vector. Given rational values such as these, the



ON THE CONVERGENCE OF THE DENSITY OF TERRAS’ SET 13

Let us translate this back to the delayed-phase triangle. Generating a delayed-phase triangle from equation
36 gives that xn

k = xn−1
k + xn−1

k−1 for k ≤ n(1− α) + β. This is the same as τ(n) = n(1− α) + β which is to
say precisely the following

Theorem 11. Let {{xn
k}} be the delayed-phase triangle generated by τ(n) = n(1− α) + β. Then, xn

k is the

number of lattice paths from (0, 0) to (n− k, k) weakly below y =
(
1
α − 1

)
x+ β

α .

In general, this is not an easy number to compute either. Progress on these lattice paths has tended to
focus on α and β rational, but these may still be difficult computationally depending on α and β. In the case
of irrational values, we may still compute the number of paths to a fixed endpoint using a line of sufficiently
close rational approximations of α and β, so that some information is known. In a simplified case, we may
still obtain a closed formula:

Corollary 5. Let {{xn
k}} be the delayed-phase triangle generated by τ(n) = n(1− α) + β. Let m1 = ⌈ α

1−α⌉
and m2 = ⌊ β

1−α⌋. Then,

(39) xn
k ≤

(
n+m2

n− k

)
−

k−m2∑
i=1

(
i(m1 + 1) +m2 − 1

i+m2

)
n− (m1 + 1)k +m2m2 + 1

n−m2 − i(m1 + 1) + 1

(
n−m2 − i(m1 + 1) + 1

k −m2 − i

)
Proof. The number of lattice paths from (0, 0) to (n− k, k) weakly below y =

(
1
α − 1

)
x+ β

α is strictly less

than the number from (0,−m2) to (n − k, n − k −m2) weakly below the line y =
(
1
α − 1

)
x. This is again

bounded above by the number of steps from (0,−m2) to (n− k, n− k−m2) weakly below the line y = 1
m1

x.

From [9] Theorem 10.4.7, we obtain the result. □

While the above formula looks intimidating, it mostly encapsulates the same two arguments presented
using Dyck paths in the previous sections. Indeed, using the cases described in those sections, this simplifies
to the aforementioned formulas.

The same survey [9] holds some more general results on lattice paths for more complex computations.

3.4. Higher Dimensions. We now want to consider Syracuse maps for which the denominator d is greater
than two. In this case, we now have Ek(x) ∈ {0, 1, ..., d − 1}k. In the case d = 2, it was simple enough to
count the number of 0s in a vector and so we obtained a structure that fit into a 2-dimensional lattice. In
the case of more general d, this moves to a d-dimensional object. With some concessions, we may again get
a formula

Proposition 12. Let V be of the form

(40) V (x) =
{

mix+ri
d x ≡ i mod d

Take the additional assumptions that mi < d for i ̸= j and mj > d, and mi + ri > 0 for all i. Let Si
k(x)

denote the number of values in (x, V (x), V 2(x), ..., V k−1(x)) which are equivalent to i mod d. Finally, let

Ak = {(c1, c2, ..., cd |
∑

i ci = k, cj ≥
∑

i ̸=j⌊
ln(mi+ri)−ln(d)

ln(mj+rj)
⌋ci}

Then, the number of values x ≤ dk with stopping time greater than k is bounded above by

(41)
∑
c∈Ak

cj −
∑

i ̸=j⌊
ln(d)−ln(mi+ri)
ln(mj+rj)−ln(d)⌋ci + 1

1 + k

(
1 + k

cj + 1, c2, ..., cd

)
Proof. For x ∈ (LV )C , we have

1

d

k d−1∏
i=0

(
mi +

ri
β

)Si
k(x)

> 1 ⇒(42)

d∑
i=0

Si
k(x) ln(mi +

ri
β
) > k ln(d)(43)

We then apply the assumption that mj > d and all others are less than d to derive
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(44)
∑
i ̸=j

Si
k(x)

[
ln(d)− ln(mi +

ri
β )

ln(mj +
rj
β )− ln(d)

]
≤ Sj

k(x)

Equating a step in the xi direction to a value of i in the vector Ek(x) gives that the number of vectors
satisfying the above is the number of lattice paths starting at (0, 0) of length k such that

(45)
∑
i̸=j

xi

[
ln(d)− ln(mi +

ri
β )

ln(mj +
rj
β )− ln(d)

]
≤ xj

In particular, this number is bounded above by the number of lattice paths satisfying

(46)
∑
i̸=j

xi⌊
ln(d)− ln(mi +

ri
β )

ln(mj +
rj
β )− ln(d)

⌋ ≤ xj

so that applying theorem 10.16.1 in [9], setting β = 1, and summing across the possibilities gives the
result. □

4. Measure Equivalences

In [2], it was shown that bounding the Collatz Trajectories is equivalent to constructing a measure which
is finite, power-bounded with respect to the Collatz map, and everywhere nonzero. The construction was
extended further to general maps including at least a single cycle in [3]. Within the case of the Collatz map,
there arise difficulties in the construction of such a measure due to family-chain connections also discussed
in [3] which allow values of preimages of a given point to vary widely in a hard-to-predict way. In this section,
we develop further the theory surrounding such applications of measures to bounding the trajectories of the
Collatz Map by extending to the cases of weaker measures, and further use a tool from dynamical systems
to also gain information on the length of cycles possible depending on current knowledge of the minimum
bound of cycle elements for cycles other than {1, 2}.

4.1. Limiting Measure Cases. The principle desire in extending the measures is to weaken the requirement
on bounding the measure of given sets, thus extending the measures to take advantage of properties noticed
in [2]. The following two results show that we may trade these requirements for behaviors over time of the
measure, perhaps allowing for leveraging long-term decreases or increases of the values of preimages. For this
section, assume each measure is non-negative and defined on the σ-algebra P (N). The following establishes
the idea behind this extension.

Proposition 13. Let there exist a finite measure µ on N such that lim
n→∞

µ(T−n(A)) exists for all A ⊂ N.
Then, D2 must have measure 0.

Proof. By contradiction, let a ∈ D2 have µ(a) > 0. Let E =
⋃∞

i=0

⋃∞
j=0 T

−j(T i(a)) be a chain-tree in D2.

We may then pick a chain H = {az}z∈Z in E to be a set such that T (az) = az+1 and a0 = a. We focus on
the measure on H. First, we construct a set An. Define An = {az}z∈nZ to be every n-th node in the chain.
We pick An =

⋃∞
i=1 T

−in(An). For each An, the n different sets An, T
−1(An), T

−2(An), ...T
−(n−1)(An) are

disjoint, and T−n(An) = An. These sets repeat as we take preimages. Therefore, if any two of these sets
have different measures under µ, say An and T−m(An), then the sub-sequences of T−k(An) corresponding
to these generated by the nth and n+mth indices converge to different values and the proof is complete.

Next, assume that µ(An) = µ(T−1(An)) = ... = µ(T−(n−1)(An)) for all n. Let µ(E) = M . Since
An ∪ T−1(An) ∪ ... ∪ T−(n−1)(An) = E, we then have that µ(An) =

M
n . Consider the set B = {az| |z| =

2n forn ∈ N}. Then, there exists a subsequence of {T−i(B)}i∈N given by {T−ik(B)} such that T−ik(B)
contains a0 for each ik. This shows that there exists a subsequence of the {T−i(B)}i∈N where the limit of
the measures of the subsequence is positive.

However, consider that for any n, B ⊂ {az | z ∈ 2nZ} ∪ {a−2n−1 , a−2n−2 , ..., a2n−1}. Note that since
µ is a finite measure and E is an infinite subset of D2, for any finite S ⊂ E, the preimages of S are
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disjoint and limm→∞ µ(T−m(S)) = 0. Take S = {a−2n−1 , a−2n−2 , ..., a2n−1}. Further, it is assumed that

µ(A2n) = µ(T−1(A2n)) = ... = µ(T−(2n−1)(A2n) = 2−nM , and so because T−k({az | z ∈ 2nZ}) is a subset
of one of these 2n sets,

(47) lim
k→∞

µ(T−k(B)) ≤ 2−nM

Since we picked n arbitrarily, the limit then must be 0. The two subsequences converge to different values,
giving a contradiction. □

The central part of the above argument is collapsing the structure of the chain-tree in such a way that
its structure mirrors the integers. We may instead expand this to collapse a single level of the chain-tree
to a set Bz corresponding to the element of the chain az. This more directly reduces considerations of the
chain-tree to considerations of the chain (or the integers), where the Collatz map acts as a right shift. This
argument allows us to extend the result further to the more-desirable Cesaro limits as opposed to standard
limits, which presents them in a form more common to Ergodic Theory.

Definition 3. Let (Ω,F , ν) be a probability measure space and V : Ω → Ω a F-measurable map. Then, we

say ν is asymptotically mean stationary with respect to V if lim
N→∞

1

N

N∑
n=1

ν(V −n(A)) exists for all A ∈ F .

Proposition 14. Let there exists a finite measure µ on N such that lim
k→∞

1

k

k∑
i=1

µ(T−i(A)) exists for all

A ⊂ N, that is to say that (N, P (N), µ, T ) is asymptotically mean stationary. Then, D2 must have measure
0.

Remark: Note that 1
k

∑k
i=1 µ(T

−i(An)) converges to
1
n as k → ∞. In other words, this is a much weaker

requirement on the measure than the previous case. The limit does act similarly on finite sets. For any set

A such that
∑∞

i=1 µ(T
−i(A)) = l < ∞, 1

k

∑k
i=1 µ(T

−i(A)) ≤ l
k shows that the limit of these means is 0.

Since the above property holds for singletons, it holds for finite sets as well. The effort is then extending to
the infinite case in the same way.

Proof. By contradiction, let µ be such a measure and a ∈ D2 be a point so µ(a) > 0. Let H = {az}z∈Z and
E be as in the proof of proposition 1, and assume µ(E) = 1 by renormalization.

We begin by redefining a set similar to the An in concept. Let Bz =
⋃∞

i=0 T
−i(T i(az)), so that the Bz

correspond to a “level” of the chain-tree E as demarcated by the az.

First, we construct a set B. To begin, select N such that
∑∞

i=N+1 µ(Bi) + µ(B−i) < 1
20 , so that also∑N

−N µ(Bi) ≥ 19
20 (these values are mostly arbitrary choices, though the first must be sufficiently small for

the following argument). Let K = 2N + 1. Let
(48)
B = [BN+1∪BN+2∪...∪B3N+1]∪[B7N+4∪B7N+5∪...∪B11N+5]∪...∪[B19N+10∪B19N+11∪...∪B27N+13]∪...

Considering levels as starting from level B−N−1, we skip K levels, then, at each step, we take enough
nodes so that the total number of levels included divided by the number of levels since −N − 1 is 1

2 , then

exclude enough that this drops to 1
3 , and exclude K more as a buffer. Looking at blocks of K nodes, where

1 represents inclusion and 0 exclusion, this looks like the sequence

(49) 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, ...

This allows us to construct two sequences based on these choices which converge in different ways.

Consider first the value 1
2K

∑2K
i=1 µ(T

−i(B)). Since T−1(Bi) = Bi−1, and since we move 2K, we have that
the K levels in B given by BN+1, ..., B3N+1 each take the values of B−N , ..., BN precisely once in the sum∑2K

i=1 µ(T
−i(B)). Therefore,

(50)

2K∑
i=1

µ(T−i(B)) ≥
(
19

20

)
·K
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Using similar equations, we may track preimages as they pass over the central mass of 19
20 or stay within

the tail mass of 1
20 to construct two sequences with masses bounded as

1

2K

2K∑
i=1

µ(T−i(B)) ≥ 19

20

(
K

2K

)
=

19

40

1

3K

3K∑
i=1

µ(T−i(B)) ≤ 1

20
+

19

20

(
K

3K

)
(51)

1

6K

6K∑
i=1

µ(T−i(B)) ≥ 19

20

(
3K

6K

)
=

19

40

1

9K

9K∑
i=1

µ(T−i(B)) ≤ 1

20
+

19

20

(
3K

9K

)
(52)

1

14K

14K∑
i=1

µ(T−i(B)) ≥ 19

20

(
7K

14K

)
=

19

40

1

21K

21K∑
i=1

µ(T−i(B)) ≤ 1

20
+

19

20

(
7K

21K

)
(53)

For the pattern on the left, we consider indices such that half of the constructed sequence up to that
point (considered from −N − 1) is included in B. In 2k, there are k left out and k included. Similarly, in
6K, there are k out, k in, 2k out, 2k in, leaving 3k in and 3k out. The measures of these are always at least
19
40 by the same computation as for the cases shown above. The pattern on the right corresponds to going
far enough forward that 1/3 of levels since −N − 1 are included and 2/3 excluded. The construction of B
guarantees that the corresponding values are at most 1

20 +
19
60 . This constructs two subsequences which must

have different limits and contradicts the assumption that the limit converges. □

Remark:

i) Constructing a measure with either the property in proposition 1 or proposition 2 which is only zero
on points known to be in C ∪D1 then this shows that D2 is empty as well.

ii) This measure has weaker requirements than that posed in [2]
iii) This proposition does not require that T be nonsingular, as the following proposition does.

A slight modification of this proposition allows for an argument based on Birkhoff’s Ergodic Theorem
which generalizes to the class of maps posed in [3] as well as to more general measurable maps. The second
version also relies on one extra proposition due to Gray and Kieffer [6]. The proof for Proposition 7 given
below may be found in U.Krengel’s book [10]. First, recall that for a probability measure space (Ω,F , ν), a
measurable map V : Ω → Ω is null-preserving or nonsingular of ν(A) = 0 implies ν(T−1(A)) = 0.

Proposition 15. The system (Ω,F , ν, V ), for V nonsingular, is asymptotically mean stationary if and only

if the averages 1
N

∑N
n=1 f(V

n(x)) converges ν-almost everywhere for each bounded, measurable function f .

Proof. For the reverse direction, note that 1
N

∑N
n=1 1A(T

n(x)) converges for each indicator function 1A and
A ∈ F . Thus,

(54)

∫
Ω

1

N

N∑
n=1

1A(T
n(x)) =

1

N

N∑
n=1

ν(V −n(A))

converges by the Dominated convergence theorem.

For the forward direction, assume that ν is a probability measure. Then, by assumption, ν̄(A) =

lim
N→∞

1

N

N∑
n=1

ν(V −n(A)) defines a measure by the Vitali-Hahn-Saks Theorem (νN (A) = 1
N

∑N
n=1 ν(V

−n(A))

for all measurable A are absolutely continuous with respect to ν and converge).

Consider the set Bf of points ω for which 1
N

∑N
n=1 f(V

n(x)) converges. The set Bf is clearly V -invariant
and so ν(Bf ) = ν̄(Bf ), where V is measure-preserving with respect to ν̄, so that the Birkhoff-Khinchin
theorem gives ν̄(Bf ) = 1. □

Proposition 16. Let there exists a finite measure µ on N everywhere nonzero such that (N, P (N), µ, T ) is
asymptotically mean stationary. Then, D2 = ∅.

Remark: Note that T is nonsingular with respect to µ in this case.
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Proof. The Hopf decomposition in [2] and [3] shows that the set D2 is an at-most countable union of
wandering sets, or

(55) D2 =

∞⋃
n=0

Wn

where µ(T i(Wn) ∩ T j(Wn)) = ∅ for i ̸= j.
Let m be the restriction to D2 of the limiting measure µ̄ in the proof of the above proposition. Note that

m is T -invariant. If µ(D2) > 0, then m(D2) > 0, and in particular, m(Wn) > 0 for a wandering set Wn.
Then, m(

⋃∞
j=0 T

−j(Wn)) ≤ m(D2) < ∞, but m(
⋃∞

j=0 T
−j(Wn)) =

∑∞
j=1 m(Wn) = ∞, a contradiction. □

This direction of the argument, that the existence of a measure implies something about D2, is the more
important direction because it allows for statements on the Collatz map. However, the converse is also true.
The following argument immediately generalizes from the Collatz map to any Syracuse-type map such that
the preimage of a finite set is finite.

Lemma 17. If D2 is empty, there exists an everywhere-nonzero finite measure µ asymptotically mean
stationary with respect to the Collatz map.

Proof. Recall the decomposition N = C ∪D1 ∪D2 (where we assume D2 = ∅ here). Let C =
⋃∞

i=1 Ci where
fore each i, Ci = {c1, .., cni

} is a cycle.
Then we construct µ to be a probability measure. Set µ(c1) = ... = µ(cni) = 1

2i+2ni
. Then, for k ≥ 0,

we take the µ(T−k(T−1(cj)\Ci)) =
1
2µ(T

1−k(T−1(cj)\Ci)) where all values in this set have equal measure.
This is to say that we consider the branch of D1 mapping to each cj in this cycle (without intersecting the
cycle elsewhere before mapping to cj) and weight these equally across the cj values. It is immediate that
µ(N) =

∑∞
i=1 2µ(Ci) = 1.

Consider first A ⊂ D1. Then,
∑∞

j=0 µ(T
−j(A)) < ∞ implies

(56) lim
N→∞

1

N

N∑
j=0

µ(T−j(A)) = 0

Next, assume that A is a subset of a single cycle Ci = {c1, ..., cni}. We have that

lim
N→∞

1

N

N∑
j=0

µ(T−j(A ∩ Ci)) = lim
N→∞

1

N

N∑
j=0

µ(T−j({cj1 , ..., cjl}))(57)

= lim
N→∞

l

N

(
N∑

m=0

2−m(N −m)

2i+2ni

)
= l(

∞∑
m=0

2−m

2i+2ni
) =

l

2i+1ni
(58)

The argument immediately generalizes to any subset of C with a bit more algebra in computing the actual
limit. Therefore, since any subset of the natural numbers may be decomposed A = (A∩C)∪ (A∩D1), µ is
asymptotically mean stationary with repect to T . □
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